Minimum spanning tree based split-and-merge: A hierarchical clustering method
نویسندگان
چکیده
Most clustering algorithms become ineffective when provided with unsuitable parameters or applied to datasets which are composed of clusters with diverse shapes, sizes, and densities. To alleviate these deficiencies, we propose a novel split-and-merge hierarchical clustering method in which a minimum spanning tree (MST) and an MST-based graph are employed to guide the splitting and merging process. In the splitting process, vertices with high degrees in the MST-based graph are selected as initial prototypes, and K-means is used to split the dataset. In the merging process, subgroup pairs are filtered and only neighboring pairs are considered for merge. The proposed method requires no parameter except the number of clusters. Experimental results demonstrate its effectiveness both on synthetic and real datasets. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
A Stock Market Filtering Model Based on Minimum Spanning Tree in Financial Networks
There have been several efforts in the literature to extract as much information as possible from the financial networks. Most of the research has been concerned about the hierarchical structures, clustering, topology and also the behavior of the market network; but not a notable work on the network filtration exists. This paper proposes a stock market filtering model using the correlation - ba...
متن کاملAn Experimental Survey on Single Linkage Clustering
Clusters are useful to identify required object from the huge amount of datasets. There are lots of clustering methods, used to create clusters. Single linkage clustering method is an example of hierarchical agglomerative clustering which is used to merge objects in a cluster, based on minimum distance. In this paper we performed an experiment on two dimensional spaces where multiple objects ar...
متن کاملA Novel Approaches on Clustering Algorithms And it’s Applications
Graph clustering algorithms are Random walk and minimum spanning tree algorithms. Random walk has been used to identify significant vertices in the graph that receive maximum flow while minimum spanning tree algorithm has been used to identify significant edges in the graph .We believe these two graph algorithms have useful applications in clustering, namely for identifying centroids and for id...
متن کاملAnt-MST: An Ant-Based Minimum Spanning Tree for Gene Expression Data Clustering
We have proposed an ant-based clustering algorithm for document clustering based on the travelling salesperson scenario. In this paper, we presented an approach called Ant-MST for gene expression data clustering based on both ant-based clustering and minimum spanning trees (MST). The ant-based clustering algorithm is firstly used to construct a fully connected network of nodes. Each node repres...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 181 شماره
صفحات -
تاریخ انتشار 2011